Semiparametric Estimation of Long-memory Models

نویسنده

  • Carlos Velasco
چکیده

This article revises semiparametric methods of inference on different aspects of long memory time series. The main focus is on estimation of the memory parameter of linear models, analyzing bandwidth choice, bias reduction techniques and robustness properties of different estimates, with some emphasis on nonstationarity and trending behaviors. These techniques extend naturally to multivariate series, where the important issues are the estimation of the long run relationship and testing of fractional cointegration. Specific techniques for the estimation of the degree of persistence of volatility for nonlinear time series are also considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet Transform for Estimating the Memory Parameter in Long Memory Stochastic Volatility Model

We consider semiparametric estimation of memory parameter in long memory stochastic volatility models. It is known that log periodogram regression estimator by Geweke and Porter-Hudak (1983) results in significant negative bias due to the existence of the spectrum of non-Gaussian noise process. Through wavelet transform of the squared process, we effectively remove the noise spectrum around zer...

متن کامل

On the Log Periodogram Regression Estimator of the Memory Parameter in Long Memory Stochastic Volatility Models

We consider semiparametric estimation of the memory parameter in a long memory stochastic volatility model+ We study the estimator based on a log periodogram regression as originally proposed by Geweke and Porter-Hudak ~1983, Journal of Time Series Analysis 4, 221–238!+ Expressions for the asymptotic bias and variance of the estimator are obtained, and the asymptotic distribution is shown to be...

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Semiparametric smoothing estimators for long-memory processes with added noise

The development of Long Memory Stochastic Volatility (LMSV) models has increased the interest in the estimation of persistent processes observed with added noise. This paper investigates the performance of semi-parametric methods for estimating the longmemory-parameter in the long-range dependence plus noise case and demonstrates improvements obtained by preliminary smoothing and aggregation of...

متن کامل

Estimating seasonal long-memory processes: a Monte Carlo study

This paper discusses extensions of the popular methods proposed by Geweke and Porter-Hudak [Geweke, J. and Porter-Hudak, S., 1983, The estimation and application of long memory times series models. Journal of Time Series Analysis, 4(4), 221–238.] and Fox and Taqqu [Fox, R. and Taqqu, M.S., 1986, Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time serie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005